Énoncé et corrigé Centrale - 2013 MP - Maths 2

Notations

Dans tout le problème, n désigne un entier naturel non nul. On note :

- $\mathcal{M}_n(\mathbb{R})$ l'espace vectoriel des matrices carrées de taille n à cœfficients réels;
- $\mathrm{GL}_n(\mathbb{R})$ le groupe des matrices inversibles de $\mathcal{M}_n(\mathbb{R})$;
- $\mathcal{O}(n)$ le groupe orthogonal d'ordre n;
- $\mathscr{S}_n^+(\mathbb{R})$, respectivement $\mathscr{S}_n^{++}(\mathbb{R})$, l'ensemble des matrices symétriques de $\mathscr{M}_n(\mathbb{R})$ dont les valeurs propres sont positives ou nulles, respectivement strictement positives ;
- I_n la matrice identité de $\mathcal{M}_n(\mathbb{R})$;
- $\mathbf{0}_n$ la matrice nulle de $\mathcal{M}_n(\mathbb{R})$.

Pour toute matrice M de $\mathcal{M}_n(\mathbb{R})$, on note tM sa matrice transposée, $\operatorname{tr}(M)$ sa trace, et, pour $(i,j) \in \{1,...,n\}^2$, m_{ij} le coefficient qui se trouve à l'intersection de la i-ème ligne et de la j-ème colonne. On munit $\mathcal{M}_n(\mathbb{R})$ de la norme définie, pour tout $M \in \mathcal{M}_n(\mathbb{R})$, par $\|M\| = \sup(|m_{ij}|, (i,j) \in \{1,...,n\}^2)$.

I Décomposition polaire d'un endomorphisme de \mathbb{R}^n

- $igl(\mathbf{Q1.} igr)$ On munit \mathbb{R}^n de sa structure euclidienne canonique.
 - a/ Soit u un endomorphisme de \mathbb{R}^n . Montrer que u est autoadjoint défini positif si et seulement si sa matrice dans n'importe quelle base orthonormée appartient à $\mathcal{S}_n^{++}(\mathbb{R})$.
 - **b**/ Montrer que si $S \in \mathcal{S}_n^{++}(\mathbb{R})$, alors S est inversible et $S^{-1} \in \mathcal{S}_n^{++}(\mathbb{R})$.
- Q2. Dans cette question, u désigne un endomorphisme de \mathbb{R}^n autoadjoint défini positif. On se propose de démontrer qu'il existe un unique endomorphisme v de \mathbb{R}^n autoadjoint, défini positif, tel que $v^2 = u$.
 - a/ Soit v un endomorphisme de \mathbb{R}^n , autoadjoint défini positif et vérifiant $v^2 = u$, et soit λ une valeur propre de u. Montrer que v induit un endomorphisme de $\mathrm{Ker}(u \lambda Id)$ que l'on déterminera.
 - \mathbf{b} / En déduire \mathbf{v} , puis conclure.
 - **c**/ Montrer qu'il existe un polynôme Q à coefficients réels tel que v = Q(u).
- **Q3.** Soit $A \in GL_n(\mathbb{R})$.
 - **a**/ Montrer que ${}^tAA \in \mathcal{S}^{++}(\mathbb{R})$.
 - **b**/ En déduire qu'il existe un unique couple $(O, S) \in \mathcal{O}(n) \times \mathcal{S}^{++}(\mathbb{R})$ tel que A = OS.
- Q4. Déterminer les matrices O et S lorsque $A = \begin{pmatrix} 3 & 0 & -1 \\ \sqrt{2}/2 & 3\sqrt{2} & -3\sqrt{2}/2 \\ -\sqrt{2}/2 & 3\sqrt{2} & 3\sqrt{2}/2 \end{pmatrix}$.
- **Q5.** a/ Montrer que $\mathcal{O}(n)$ est une partie compacte de $\mathcal{M}_n(\mathbb{R})$.
 - **b**/ Montrer que $\mathcal{S}^+(\mathbb{R})$ est un fermé de $\mathcal{M}_n(\mathbb{R})$.
 - c/ Montrer que $\mathrm{GL}_n(\mathbb{R})$ est une partie dense de $\mathcal{M}_n(\mathbb{R})$.
 - **d**/ Soit $A \in \mathcal{M}_n(\mathbb{R})$. Montrer qu'il existe un couple $(O, S) \in \mathcal{O}(n) \times \mathcal{S}^+(\mathbb{R})$ tel que A = OS. Un tel couple est-il unique?
 - e/ Soit φ l'application de $\mathcal{O}(n) \times \mathcal{S}^{++}(\mathbb{R})$ dans $\mathrm{GL}_n(\mathbb{R})$ définie par $\varphi(O,S) = OS$ pour tout couple (O,S) de $\mathcal{O}(n) \times \mathcal{S}^{++}(\mathbb{R})$.

Montrer que ϕ est bijective, continue et que sa réciproque est continue.

II Deux applications

Première application

Dans cette partie, A et B désignent deux matrices de $\mathcal{M}_n(\mathbb{R})$. On suppose qu'il existe une matrice U carrée de taille n, inversible, à cœfficients complexes, telle que $U^t\overline{U} = I_n$ et $A = UBU^{-1}$, où \overline{U} désigne la matrice dont les cœfficients sont les conjugués de ceux de U.

 $\overline{\mathbf{Q1.}}$ Justifier que ${}^tA = \mathbf{U}({}^tB)\mathbf{U}^{-1}$.

- Q2. On se propose de montrer qu'il existe une matrice $P \in GL_n(\mathbb{R})$ telle que $A = PBP^{-1}$ et ${}^tA = P{}^tBP^{-1}$. Pour cela, on note X et Y les matrices de $\mathcal{M}_n(\mathbb{R})$ telles que U = X + iY.
 - **a**/ Montrer qu'il existe $\mu \in \mathbb{R}$ tel que $X + \mu Y \in GL_n(\mathbb{R})$.
 - **b**/ Montrer que AX = XB et AY = YB.
 - c/ Conclure.
- **Q3.** On écrit **P** sous la forme **P** = **OS**, avec $O \in \mathcal{O}(n)$ et $S \in \mathcal{S}_n^{++}(\mathbb{R})$.
 - **a**/ Montrer que $BS^2 = S^2B$, puis que BS = SB.
 - **b**/ En déduire qu'il existe $O \in \mathcal{O}(n)$ tel que $A = OB^tO$.

Seconde application

Soit $A \in \mathcal{M}_n(\mathbb{R})$. On se propose de donner une condition nécessaire et suffisante d'existence d'une solution $X \in GL_n(\mathbb{R})$ au système

$$(*) \begin{cases} {}^{t}AA + {}^{t}XX = I_{n} \\ {}^{t}AX - {}^{t}XA = 0_{n} \end{cases}$$

- Montrer que si le système (*) admet une solution dans $GL_n(\mathbb{R})$, alors les valeurs propres de tAA appartiennent à l'intervalle [0,1[.
- $\overline{\mathbf{Q2.}}$ On suppose dans cette question que les valeurs propres de tAA appartiennent à l'intervalle [0,1[.
 - a/ Justifier que l'on peut chercher les solutions X de (*) sous la forme X = UH, avec $U \in \mathcal{O}(n)$ et $H \in \mathcal{S}_n^{++}(\mathbb{R})$.
 - **b**/ Déterminer **H**.
 - c/ Montrer l'existence d'une solution $X \in GL_n(\mathbb{R})$ de (*) appartenant à $GL_n(\mathbb{R})$.

III Valeurs propres d'une matrice

Pour $p \in \mathbb{N}^*$, on pose

$$A_p = \left(egin{array}{ccccccc} 2 & -1 & 0 & \dots & 0 \\ -1 & 2 & -1 & \ddots & dots \\ 0 & -1 & 2 & \ddots & 0 \\ dots & \ddots & \ddots & \ddots & -1 \\ 0 & \dots & 0 & -1 & 2 \end{array}
ight) \in \mathcal{M}_p(\mathbb{R})$$

On note P_p le polynôme tel que, pour tout réel x, $P_p(x) = \det(xI_p - A_p)$.

- Q1. Montrer qu'à $x \in \mathbb{R}$ fixé, la suite $(P_p(x))_{p \in \mathbb{N}^*}$ vérifie une relation linéaire d'ordre 2, que l'on précisera.
- Q2. Soit $x \in \mathbb{R}$ tel que |2-x| < 2. Après avoir justifié l'existence d'un unique $\theta \in]0, \pi[$ tel que $2-x = 2\cos\theta$, déterminer $P_p(x)$ en fonction de $\sin((p+1)\theta)$ et de $\sin(\theta)$.
- $\overline{\mathbf{Q3.}}$ Déterminer les valeurs propres de A_p .
- Montrer que A_p est diagonalisable, et en déterminer une base de vecteurs propres, en précisant pour chacun la valeur propre associée.

VI

Soit f une forme linéaire sur $\mathcal{M}_n(\mathbb{R})$.

- Q1. Montrer qu'il existe une unique matrice $A \in \mathcal{M}_n(\mathbb{R})$ telle que $\forall M \in \mathcal{M}_n(\mathbb{R})$, $f(M) = \operatorname{tr}(AM)$.

 Dans la suite, A désigne la matrice définie dans cette question IV.1.
- **Q2.** a/ Justifier l'existence de $M_n = \sup(f(O), O \in \mathcal{O}(n))$.
 - **b**/ Justifier que tAA admet n valeurs propres positives $\mu_1,...,\mu_n$, comptées avec multiplicités.
 - c/ Montrer que $M_n = \sup(\operatorname{tr}(D\Omega), \Omega \in \mathcal{O}(n))$, où D est la matrice diagonale, dont les éléments diagonaux sont $\sqrt{\mu_1}, ..., \sqrt{\mu_n}$.
 - **d**/ En déduire que $M_n = \sum_{k=1}^n \sqrt{\mu_k}$.

- a/ Déterminer la matrice A telle que $\forall M \in \mathcal{M}_n(\mathbb{R}), f(M) = \text{tr}(AM)$.
- **b**/ Montrer que

$$A^{-1} = \begin{pmatrix} 1 & -1 & 0 & \cdots & 0 \\ 0 & 1 & -1 & \ddots & \vdots \\ \vdots & \ddots & 1 & \ddots & 0 \\ \vdots & & \ddots & \ddots & -1 \\ 0 & \cdots & \cdots & 0 & 1 \end{pmatrix}$$

- c/ Déterminer les valeurs propres de $A^{-1}tA^{-1}$.
- **d**/ Montrer que $M_n = \sum_{k=1}^n \frac{1}{2\cos\frac{k\pi}{2n+1}}$.
- e/ Donner un équivalent de M_n lorsque n tend vers $+\infty$.

Fin énoncé

Corrigé

I Décomposition polaire d'un endomorphisme de \mathbb{R}^n

Q1. a/ Soient \mathscr{B} une base de \mathbb{R}^n , $A = \operatorname{mat}_{\mathscr{B}} u$; $X, Y \in \mathscr{M}_{n,1}(\mathbb{R})$ $X = \operatorname{mat}_{\mathscr{B}} x$ et $Y = \operatorname{mat}_{\mathscr{B}} y$ \Longrightarrow La base \mathscr{B} étant orthonormé et $u^* = u$ alors :

$$\langle u(x)|v\rangle = \langle x, u(v)\rangle \implies {}^{t}X^{t}AY = {}^{t}XAY$$

Et ceci pour tout $X, Y \in \mathcal{M}_{n,1}(\mathbb{R})$, donc ${}^tA = A$.

Pour tout $X \in \mathcal{M}_{n,1}(\mathbb{R}) - \{0\}$, $\langle x | u(x) \rangle = {}^t X A X > 0$ car u est défini positif, donc $A \in \mathcal{S}_n^{++}(\mathbb{R})$. \Leftarrow Pour tout $x, y \in \mathbb{R}^n$

$${}^{t}X^{t}AY = {}^{t}XAY \implies \langle u(x)|y\rangle = \langle x, u(y)\rangle$$

Donc $u = u^*$

Pour tout $x \in \mathbb{R}^n - \{0\}$, $\langle x | u(x) \rangle = {}^t X A X > 0$ car A est définie positif, donc u est défini positif.

b/ **0** n'est pas valeur propre de S, donc S est inversible, ${}^tS = S \Longrightarrow^t S^{-1} = S^{-1}$ c-à-d S^{-1} est symétrique.

De plus le théorème spectrale assure l'existence d'une matrice P orthogonale et d'une matrice $D = \operatorname{diag}(\lambda_1,...,\lambda_n)$, telles que $S = PDP^{-1}$, donc $S^{-1} = P\operatorname{diag}(\frac{1}{\lambda_1},...,\frac{1}{\lambda_n})P^{-1}$, il apparaît bien que les valeurs propres de S^{-1} sont strictement positives.

Q2. $\mathbf{a}/\mathbf{v} \circ (\mathbf{u} - \lambda \mathbf{Id}) = \mathbf{v}^3 - \lambda \mathbf{v} = (\mathbf{u} - \lambda \mathbf{Id}) \circ \mathbf{v}$, alors $\ker(\mathbf{u} - \lambda \mathbf{Id})$ est stable par \mathbf{v} .

Posons donc $w = v/\ker(u - \lambda Id)$, w est évidement symétrique défini positif, donc diagonalisable, soit donc $\mu > 0$ l'une de ses valeurs propres.

 $\exists x \in \ker(u - \lambda Id) - \{0\} \text{ tel que } w(x) = \mu x, \text{ donc } w^2(x) = v^2(x) = \mu^2 x = u(x) = \lambda x$

Donc $\mu = \sqrt{\lambda}$, comme w possède des valeurs propres, alors $Sp(w) = {\sqrt{\lambda}}$.

L'endomorphisme w est diagonalisable, donc $\ker(u - \lambda Id) = \ker(w - \sqrt{\lambda}Id)$, c-à-d $\forall x \in \ker(u - \lambda Id)$, $v(x) = \sqrt{\lambda}x$

b/ L'endomorphisme u est diagonalisable, donc $\mathbb{R}^n = \bigoplus_{\lambda \in \operatorname{Sp} u} \ker(u - \lambda Id)$

Pour tout $x \in \mathbb{R}^n$, x s'écrit d'une façon unique sous la forme $x = \sum_{\lambda \in \operatorname{Sp} u} x_{\lambda}$, alors $v(x) = \sum_{\lambda \in \operatorname{Sp} u} \sqrt{\lambda} x_{\lambda}$,

ainsi v est bien déterminé et donc unique.

Reste à montrer que v existe. Soit $\mathcal B$ une base de $\mathbb R^n$ et $A=\mathrm{mat}_{\mathcal B} u$, $B=\mathrm{mat}_{\mathcal B} v$. Le théorème spectrale appliqué à A assure l'existence d'une matrice P orthogonale et d'une matrice $D=\mathrm{diag}(\lambda_1,...,\lambda_n)$, telles que $S=PDP^{-1}$, tous les λ_i sont >0, car u est défini positif, posons $B=P\mathrm{diag}(\sqrt{\lambda_1},...,\sqrt{\lambda_n})P^{-1}$. On a bien $B^2=A$ et B est symétrique et définie positive, c-à-d l'existence de v auto-adjoint défini positif tel que $v^2=u$

c/ Soient $\mu_1,...,\mu_r$ les valeurs propres distinctes de u et $m_1,...,m_r$ leurs multiplicités respectives, considérons l'application : φ : $\mathbb{R}_{r-1}[X] \longrightarrow \mathbb{R}^r$

$$Q \longmapsto (Q(\mu_1),...,Q(\mu_r))$$

 φ est une application linéaire injective, les espaces $\mathbb{R}_{r-1}[X]$ et \mathbb{R}^r ont la même dimension, c'est donc un isomorphisme.

 $(\sqrt{\mu_1},...,\sqrt{\mu_r}) \in \mathbb{R}^r$, $\exists ! Q \in \mathbb{R}_{r-1}[X]$ tel que $(Q(\mu_1),...,Q(\mu_r)) = (\sqrt{\mu_1},...,\sqrt{\mu_r})$, on peut écrire : $Q(A) = Q(P \operatorname{diag}(\mu_1 I_{m_1},...,\mu_r I_{m_r})P^{-1}) = P \operatorname{diag}(Q(\mu_1) I_{m_1},...,Q(\mu_r) I_{m_r})P^{-1} = B$.

Q3. a/ C'est évident que tAA est symétrique. Soit $X \in \mathcal{M}_{n,1}(\mathbb{R}) - \{0\}$, ${}^tX^tAAX = \|AX\|^2 \ge 0$ Si AX = 0, alors $A^{-1}AX = 0$, c-à-d X = 0, donc ${}^tX^tAAX > 0$.

b/ Il existe une unique matrice $S \in \mathcal{S}_n^{++}(\mathbb{R})$ tel que ${}^tAA = S^2$ et ceci de la question précédente car ${}^tAA \in \mathcal{S}_n^{++}(\mathbb{R})$. De la question 1, S est inversible, posons $O = AS^{-1}$, alors ${}^tOO = S^{-1} {}^tAA S^{-1} = S^{-1}S^2S^{-1} = I_n$.

S est unique, donc O aussi.

c/ On a
$${}^{t}AA = \begin{pmatrix} 10 & 0 & -6 \\ 0 & 36 & 0 \\ -6 & 0 & 10 \end{pmatrix}$$

L'ensemble de ses valeurs propres est {4,16,36

Alors
$${}^{t}AA = P \operatorname{diag}(4,16,36) {}^{t}P$$
 où $P = \begin{pmatrix} \sqrt{2}/2 & \sqrt{2}/2 & 0 \\ 0 & 0 & 1 \\ \sqrt{2}/2 & -\sqrt{2}/2 & 0 \end{pmatrix}$, on prend alors :

$$S = P \operatorname{diag}(2,4,6)^{t} P = \begin{pmatrix} 3 & 0 & -1 \\ 0 & 6 & 0 \\ -1 & 0 & 3 \end{pmatrix}, \text{ par conséquent } O = AS^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ 0 & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}.$$

a/ L'application $\varphi_1: A \longmapsto ({}^tA, A)$ est linéaire et $\varphi_2: (A, B) \longmapsto AB$ est bilinéaire, ces applications dé-Q4. marrant tous des espaces de dimensions finies, donc elles sont continues. $\mathcal{O}(n) = (\varphi_2 \circ \varphi_1)^{-1} \{I_n\}$ donc $\mathcal{O}(n)$ est un fermé.

> Si $A = (a_{i,j}) \in \mathcal{O}(n)$, alors $\forall i, j \in [[1, n]], |a_{i,j}| \le 1$, alors $||A|| \le 1$, donc $\mathcal{O}(n)$ est borné, on est dans un espace de dimension fini alors $\mathcal{O}(n)$ est un compact.

finie donc continue.

Soit $(A_p)_p$ une suite d'éléments de $\mathcal{S}_n^+(\mathbb{R})$ qui converge vers A.

Soit $p \in \mathbb{N}$, on a ${}^tA_p = A_p$, donc ${}^tA = A$, car la transposition est continue.

 ${}^tX^tA_pX \ge 0$, donc ${}^tX^tAX \ge 0$ car φ est continue.

Donc $A \in \mathcal{S}_n^+(\mathbb{R})$, et $\mathcal{S}_n^+(\mathbb{R})$ est un fermé.

c/ Soit $A \in \mathcal{M}_n(\mathbb{R})$, posons pour tout $p \in \mathbb{N}^*$, $A_p = A - \frac{1}{p}I_n$. On a $||A_p - A|| = \frac{1}{n} \underset{p \to +\infty}{\longrightarrow} 0$.

Les valeurs propres de *A* sont en nombres finie, $\exists N \in \mathbb{N}^*$ tel que $\forall p \ge N$, $\frac{1}{n} \notin \operatorname{Sp}(A)$.

Alors $\forall p \ge N$, $A_p \in GL_n(\mathbb{R})$, et $GL_n(\mathbb{R})$ est dense dans $\mathcal{M}_n(\mathbb{R})$.

d/ Soit $A \in \mathcal{M}_n(\mathbb{R})$, il existe une suite $(A_p)_{p \in \mathbb{N}}$ d'éléments de $GL_n(\mathbb{R})$ qui converge vers A.

Pour tout $p \in \mathbb{N}$, il existe $(O_p, S_p) \in \mathcal{O}(n) \times \mathcal{S}_n^+(\mathbb{R})$ tel que $A_p = O_p S_p$.

 $\mathcal{O}(n)$ est un compact, il existe une sous suite $(O_{a(p)})_p$ de $(O_p)_p$ qui converge vers $O \in \mathcal{O}(n)$.

Comme l'application $\operatorname{GL}_n(\mathbb{R}) \longrightarrow \operatorname{GL}_n(\mathbb{R})$ est continue (cours), alors $O_{a(p)}^{-1}$ converge vers O^{-1} . $M \longmapsto M^{-1}$ l'application $\mathcal{M}_n(\mathbb{R})^2 \longrightarrow \mathcal{M}_n(\mathbb{R})$ est continue, alors $O_{a(p)}^{-1}A_{a(p)}$ converge vers $O^{-1}A$. $(A,B) \longmapsto AB$

Posons : $O^{-1}A = S$, alors $\underline{A = OS}$, pour tout $p \in \mathbb{N}$, $O_{a(p)}^{-1}A_{a(p)} = S_{a(p)}$, la suite $(S_{a(p)})_p$ d'éléments de $\mathcal{S}_n^+(\mathbb{R})$ qui est un fermé est convergente vers $S \in \mathcal{S}_n^+(\mathbb{R})$, alors $S \in \mathcal{S}_n^+(\mathbb{R})$.

de
$$\mathcal{G}_n$$
 (R) qui est un ferme est convergente vers $\mathbf{S} \in \mathcal{G}_n$ (R), alors $\mathbf{S} \in \mathcal{G}_n$ (R).

$$\underbrace{\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}}_{\text{orthogonale symétrique}} \underbrace{\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}}_{\text{orthogonale symétrique}} = \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}}_{\text{orthogonale symétrique}} \underbrace{\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}}_{\text{orthogonale symétrique}}, \text{ il n'y a donc pas unicité de la décomposition polaire.}$$

Q5. L'application $\mathcal{M}_n(\mathbb{R})^2 \longrightarrow \mathcal{M}_n(\mathbb{R})$ est continue, donc φ est continue. $(A,B) \longrightarrow AB$

De la question 3.b) φ est bijective.

Soit $(A_p)_p$ une suite d'éléments de $\mathrm{GL}_n(\mathbb{R})$ qui converge vers $A \in \mathrm{GL}_n(\mathbb{R})$, posons pour tout $p \in \mathbb{N}$, $A_p = O_p S_p$ et A = OS les décompositions polaires de A_p et de A, montrons que $\varphi^{-1}(A_p) = (O_p, S_p)$ tend vers $\varphi^{-1}(A) = (O_p, S_p)$ $(\boldsymbol{O},\boldsymbol{S})$ c'est à dire montrons que \boldsymbol{O}_p tend vers \boldsymbol{O} et \boldsymbol{S}_p tend vers \boldsymbol{S} .

On a ${}^tA_pA_p = S_p^2$ tend vers ${}^tAA = S^2$, alors $\operatorname{tr}({}^tA_pA_p) = \operatorname{tr}(S_p^2)$ tend vers $\operatorname{tr}({}^tAA) = \operatorname{tr}(S^2)$.

L'application $(A, B) \longrightarrow \operatorname{tr}({}^t A B)$ est un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$, posons $||A||_2 = \sqrt{\operatorname{tr}({}^t A A)}$.

Alors $\|S_p\|_2$ tend vers $\|S\|_2$, donc la suite $(S_p)_p$ est bornée et elle admet donc au moins une valeur d'adhérence (Bolzano).

Soient L_1 et L_2 deux valeurs d'adhérence de $(S_p)_p$, alors ils existent deux sous suites $(S_{a(p)})_p$ et $(S_{b(p)})_p$ de $(S_p)_p$ qui convergent respectivement vers L_1 et L_2 , alors $L_1^2 = L_2^2 = S^2$, les matrices L_1 et L_2 sont dans $\mathcal{S}_n^{++}(\mathbb{R})$ et de la question I.2) alors $L_1 = L_2 = S$ et la suite $(S_p)_p$ admet une seul valeur d'adhérence S.

Supposons par l'absurde que $(S_p)_p$ ne converge pas vers S, alors

 $\exists \varepsilon$, $\forall N \in \mathbb{N}, \exists n \ge N / \|S_n - S\| \ge \varepsilon$, ainsi on peut construire une sous suite $(S_{a(p)})_p$ de $(S_p)_p$ qui vérifie :

$$\exists \varepsilon, \ \forall p \in \mathbb{N}, \|S_{a(p)} - S\| \ge \varepsilon; (*)$$

Par la même procédure la suite $(S_{a(p)})_p$ est bornée donc possède une valeur d'adhérence qui est celle de $(S_p)_p$ c-à-d S et ceci est absurde avec (*)

$$O_p = A_p S_p^{-1}$$
 tend vers $O = AS^{-1}$.

II Deux applications

Première application

Q1. On a $\overline{A} = \overline{U} \overline{B} \overline{U}^{-1}$, les matrices A et B sont dans à cœfficients réelles, donc $A = \overline{U} B \overline{U}^{-1}$.

Alors ${}^{t}A = {}^{t}\overline{U}^{-1}({}^{t}B){}^{t}\overline{U}$ et ${}^{t}\overline{U} = U^{-1}$, donc ${}^{t}A = U({}^{t}B)U^{-1}$.

Q2. a/ Posons $Q(X) = \det(A + XB) \in \mathbb{R}[X]$, $Q(i) = \det(U) \neq 0$, donc Q est non nul, ses racines sont en nombres finis, il existe donc $\mu \in \mathbb{R}$ tel que $Q(\mu) \neq 0$ et $A + \mu B$ est inversible.

b/

$$A = UBU^{-1} \implies AU = UB$$

 $\implies AX + iAY = XB + iYB$
 $\implies AX = XB \text{ et } AY = YB$

c/ ALors

$$AX = XB \text{ et } AY = YB \implies AX + \mu AY = XB + \mu YB$$

$$\implies A(X + \mu Y) = (X + \mu Y)B$$

$$\implies A = (X + \mu Y)B(X + \mu Y)^{-1}$$

En echangent les rôles de $(A \text{ et }^t A)$ et $(B \text{ et }^t B)$, on obtient ${}^t A = (X + \mu Y)^t B (X + \mu Y)^{-1}$ La matrice $P = X + \mu Y$ qui est dans $\operatorname{GL}_n(\mathbb{R})$ répond à la question.

- Q3. a/ De ce qui précède $PBP^{-1} = A = {}^tP^{-1}B^tP$, alors ${}^tPPB = B^tPP$, par conséquent $S^2B = BS^2$. Or $S^2 = (S^2)$ et de la question $I(S^2)$ il existe un polynôme $I(S^2)$ tel que $I(S^2)$ alors $I(S^2)$ alors I(S
 - **b**/ On alors, $A = OSBS^{-1}O^{-1} = OBO^{-1}$.

Seconde application

 $\boxed{\mathbf{Q1.}}$ La matrice ${}^{t}AA$ est symétrique positive, donc ses valeurs propres sont positives.

Soit λ une valeur propre de tAA , il existe $Y \in \mathcal{M}_{n,1}(\mathbb{R})$ non nul tel que ${}^tAAY = \lambda Y$.

La première équation du système entraine que ${}^tY^tAAY + {}^tY^tXXY = {}^tYY$, alors $\lambda \|Y\|^2 + \|XY\|^2 = \|Y\|^2$, ce qui s'écrit $\frac{\|XY\|^2}{\|Y\|^2} = 1 - \lambda > 0$ car X est inversible. Donc $\lambda \in [0,1[$.

- **Q2.** a/ $\operatorname{Sp}(I_n {}^t AA) = \{1 \lambda / \lambda \in \operatorname{Sp}({}^t AA)\} \subset \mathbb{R}^{*+}$, donc si X solution de (*) existe elle est inversible et de la partie I il existe $(U, H) \in \mathcal{O}_n \times \mathcal{S}_n^{++}(\mathbb{R})$ telle que X = UH.
 - **b**/ On a alors de la première équation du système $I_n {}^t AA = H^2$, et H existe et unique de la partie I)2).
 - c/ Reste à donner une matrice orthogonale U telle que la matrice X = UH est solution du système. $\exists (O,S) \in \mathcal{O}(n) \times \mathcal{S}_n^{++}(\mathbb{R}), \ / \ A = OS$, alors, la matrice U, doit vérifier $S^tOUH = H^tUOS$, c'est la 2 ème équation du système. On prend U = O, et on vérifiera que ça marche.

On a alors SH = HS et la première équation du système entraı̂ne $S^2 + H^2 = I_n$.

En apliquant la partie I, il existe un polynôme Q tel que $Q(I_n - {}^t AA) = H$, car $I_n - {}^t AA = H^2$, alors H est un polynôme en S^2 donc en S. Le choix donc de U est convenable.

III Valeurs propres d'une matrice

- Q1. $P_1(x) = x 2$ et $P_2(x) = (x 2)^2 1$. Pour $p \ge 3$, un développement suivant la première ligne de $P_p(x)$, donne $P_p(x) = (x - 2)P_{p-1}(x) - 2$
- Q2. L'application cos réalise une bijection de]0, π [vers] 1,1[, (2-x)/2 \in] 1,1[, donc \exists ! $\theta \in$]0, π [tel que $2-x=2\cos\theta$.

On remarque que
$$P_1(x) = -\frac{\sin(2\theta)}{\sin\theta}$$
 et $P_2(x) = \frac{\sin(3\theta)}{\sin\theta}$
Soit $p \ge 3$, supposons que $P_{p-1}(x) = (-1)^{p-1} \frac{\sin(p\theta)}{\sin\theta}$ et $P_{p-2}(x) = (-1)^{p-2} \frac{\sin((p-1)\theta)}{\sin\theta}$, alors

$$P_{p}(x) = (x-2)P_{p-1}(x) - P_{p-2}(x)$$

$$= 2\cos\theta(-1)^{p} \frac{\sin(p\theta)}{\sin\theta} - (-1)^{p} \frac{\sin((p-1)\theta)}{\sin\theta}$$

$$= \frac{(-1)^{p}}{\sin\theta} [2\cos\theta\sin(p\theta) - \sin(p-1)\theta]$$

$$= \frac{(-1)^{p}}{\sin\theta} \sin(p+1)\theta$$

Donc $\forall p \in \mathbb{N}^*, P_p(x) = (-1)^p \frac{\sin(p+1)\theta}{\sin\theta}.$

Q3.) La matrice A_p admet au plus p valeurs propres. Cherchons ses valeurs propres x qui vérifient |2-x| < 2,

$$P_{p}(x) = 0 \iff \sin(p+1)\theta = 0$$

$$\iff (p+1)\theta = k\pi, \quad k \in \{1, ..., p\} \text{ car } \theta \in]0, \pi[$$

$$\iff \theta = \frac{k\pi}{p+1}, \quad k \in \{1, ..., p\}$$

Alors $x_k = 2 - 2\cos\theta = 4\sin^2\frac{k\pi}{2(p+1)}$ avec $k \in \{1, ..., p\}$, comme le nombre de ces valeurs propres est p, ce sont donc les valeurs propres de A_p .

 $\mathbf{Q4.}$ A_p est symétrique réelle (ou bien admet p valeurs propres distinctes) donc diagonalisable.

Soit
$$\begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix}$$
 un vecteur propre associé à la valeur propre $\lambda_k = 4\sin^2\frac{\theta_k}{2}$ où $\theta_k = \frac{k\pi}{p+1}$.

$$A_{p}\begin{pmatrix} x_{1} \\ \vdots \\ x_{p} \end{pmatrix} = \lambda_{k}\begin{pmatrix} x_{1} \\ \vdots \\ x_{p} \end{pmatrix} \iff \begin{cases} x_{n} - (2 - \lambda_{k})x_{n+1} + x_{n+2} = 0 \\ 0 \le n \le p - 1 \\ \text{avec la convention} \quad x_{0} = x_{p+1} = 0 \end{cases}$$

Mais $2 - \lambda_k = 2\cos\theta_k$, alors x_n est de la forme $ae^{in\theta_k} + be^{-in\theta_k}$ où $a, b \in \mathbb{C}$, et puisque $x_0 = 0$, alors

$$x_n = 2ia \sin n\theta_k$$
, par conséquent $E_{\lambda_k}(A_p) = \text{vect} \begin{pmatrix} \sin \theta_k \\ \vdots \\ \sin p\theta_k \end{pmatrix}$

VI

Q1. Soit $A \in \mathcal{M}_n(\mathbb{R})$, considérons l'application linéaire suivante $\delta_A : \mathcal{M}_n(\mathbb{R}) \longrightarrow \mathbb{R}$, alors l'appli $M \longmapsto \operatorname{tr}(AM)$

cation $\delta: \mathcal{M}_n(\mathbb{R}) \longrightarrow (\mathcal{M}_n(\mathbb{R}))^*$ est un isomorphisme d'espaces vectoriels, en effet : $A \longmapsto \delta_A$

Soit $A = (a_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{R})$,

$$A \in \ker \delta \iff \forall M \in \mathcal{M}_n(\mathbb{R}), \operatorname{tr}(AM) = 0$$

En particulier $\operatorname{tr}({}^t AA) = 0$, par conséquent $\sum_{1 \le i,j \le n} a_{i,j}^2 = 0$, alors A = 0, δ est donc injective, les espaces

 $(\mathcal{M}_n(\mathbb{R}))^*$ et $\mathcal{M}_n(\mathbb{R})$ ont la même dimension qui est n^2 fini.

 $f \in (\mathcal{M}_n(\mathbb{R}))^*$, donc $\exists ! A \in \mathcal{M}_n(\mathbb{R}) / \delta(A) = f$, autrement dit :

$$\exists ! A \in \mathcal{M}_n(\mathbb{R}) \ \forall M \in \mathcal{M}_n(\mathbb{R}), \ f(M) = \operatorname{tr}(AM)$$

- **Q2. a**/ f est linéaire, et $\mathcal{M}_n(\mathbb{R})$ est de dimension finie, alors, f est continue. $\mathcal{O}(n)$ est un compact et f est à valeurs dans \mathbb{R} , donc M_n existe.
 - **b**/ Elle est évident que ^tAA est symétrique positive donc amdet *n* valeurs propres positives comptés avec leurs multiplicités.
 - c/ Pour toute $B \in GL_n(\mathbb{R})$, l'application $\mathcal{O}(n) \longrightarrow \mathcal{O}(n)$ est une bijection.

De la partie I il existe $(U, H) \in \mathcal{O}(n) \times \mathcal{S}_n^+(\mathbb{R})$ telle que A = UH, $\exists P \in \mathcal{O}(n)$ telle que ${}^tAA = P(D^2){}^tP$, et $H = PD^tP$ et $\operatorname{tr}(AB) = \operatorname{tr}(BA)$ alors:

$$M_n = \sup \{ \operatorname{tr}(OA) / O \in \mathcal{O}(n) \}$$

$$= \sup \{ \operatorname{tr}(OUH) / O \in \mathcal{O}(n) \}$$

$$= \sup \{ \operatorname{tr}(\Omega H) / \Omega \in \mathcal{O}(n) \}$$

$$= \sup \{ \operatorname{tr}(\Omega PD^t P) / \Omega \in \mathcal{O}(n) \}$$

$$= \sup \{ \operatorname{tr}(\Omega D) / \Omega \in \mathcal{O}(n) \}$$

 $\mathbf{d}/ \quad \text{D'une part } \sup\{\operatorname{tr}(\boldsymbol{\Omega}\boldsymbol{D}) \, / \, \boldsymbol{\Omega} \in \mathcal{O}(\boldsymbol{n})\} \geq \operatorname{tr}(\boldsymbol{D}) = \sum_{i=1}^n \sqrt{\mu_i} \, \operatorname{car} \, \boldsymbol{I}_{\boldsymbol{n}} \text{ est une matrice orthogonale.}$

D'autre part si on pose $\Omega = (\omega_{i,j})$, alors $\operatorname{tr}(\Omega D) = \sum_{i=1}^n \omega_{i,i} \sqrt{\mu_i}$,

 $\text{Mais } \boldsymbol{\Omega} \text{ est orthogonale, donc } \forall i,j \in \{1,..,n\}, \boldsymbol{\omega}_{i,j} \leq 1, \text{ donc } \text{tr}(\boldsymbol{\Omega}\boldsymbol{D}) \leq \sum_{i=1}^n \sqrt{\mu_i}, \text{ alors } \boldsymbol{M}_n \leq \sum_{i=1}^n \sqrt{\mu_i}.$

Par conséquent : $M_n = \sum_{i=1}^n \sqrt{\mu_i}$.

Q3. a/ Posons $A = (a_{i,j})$, pour $k, \ell \in \{1, ..., n\}$, $f(E_{k\ell}) = \operatorname{tr}(AE_{k\ell}) = a_{\ell k} = \begin{cases} 0 & \text{si } k < \ell \\ 1 & \text{si } k \ge \ell \end{cases}$ Alors

$$A = \left(\begin{array}{cccc} \mathbf{1} & \cdots & \cdots & \mathbf{1} \\ \mathbf{0} & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \mathbf{0} & \cdots & \mathbf{0} & \mathbf{1} \end{array}\right)$$

b/ Posons $X \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ et $Y \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$, alors

$$AX = Y \iff \begin{cases} x_1 + \dots + x_n &= y_1 \\ x_2 + \dots + x_n &= y_2 \\ \dots &= \dots \\ x_n &= y_n \end{cases}$$

$$\iff \begin{cases} y_1 - y_2 &= x_1 \\ \dots &= \dots \\ y_{n-1} - y_n &= x_{n-1} \\ y_n &= x_n \end{cases}$$

$$\iff A^{-1}Y = X$$

où
$$A^{-1} = \begin{pmatrix} 1 & -1 & 0 & \dots & 0 \\ 0 & 1 & -1 & \ddots & \vdots \\ \vdots & \ddots & 1 & \ddots & 0 \\ \vdots & & \ddots & \ddots & -1 \\ 0 & \dots & \dots & 0 & 1 \end{pmatrix}$$

c/ Posons
$$J = A^{-1} t A^{-1} = \begin{pmatrix} 2 & -1 & 0 & \cdots & 0 \\ -1 & 2 & -1 & \ddots & \vdots \\ 0 & -1 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & 2 & -1 \\ 0 & \cdots & 0 & -1 & 1 \end{pmatrix}$$
 Attention, ce n'est pas A_n de la partie III .

Mais déjà on peut remarquer qu'elle est symétrique réelle.

On reprend les notations de III, $2-x=2\cos\theta$.

$$(-1)^{n}\chi_{J}(x) = \det(xI_{n} - J)$$

$$= (x-1)P_{n-1}(x) - P_{n-2}(x) \text{ Décomposition suivant la dernière ligne}$$

$$= (x-1)(-1)^{n-1}\frac{\sin n\theta}{\sin \theta} - (-1)^{n}\frac{\sin(n-1)\theta}{\sin \theta}$$

$$= \frac{(-1)^{n}}{\sin \theta} [\sin n\theta(2\cos\theta - 1) - \sin(n-1)\theta]$$

$$= \frac{(-1)^{n}}{\sin \theta} [\sin(n+1)\theta - \sin n\theta]$$

$$= \frac{(-1)^{n}}{\cos \theta/2} [\cos(2n+1)\theta/2]$$

Alors

$$\chi_J(x) = 0 \iff \theta = \frac{(2k+1)\pi}{2n+1}; k \in \{0,...,(n-1)\}$$

Ainsi
$$x = 2(1 - \cos\frac{(2k+1)\pi}{2n+1}) = 2(1 + \cos(\pi - \frac{(2k+1)\pi}{2n+1})) = 2(1 + \cos\frac{2(n-k)\pi}{2n+1}) = 4\cos^2\frac{(n-k)\pi}{2n+1}$$

Donc Sp $(A^{-1}A^{-1}) = \left\{4\cos^2\frac{(n-k)\pi}{2n+1} / k \in [[0,n-1]]\right\} = \left\{4\cos^2\frac{k\pi}{2n+1} / k \in [[1,n]]\right\}$

d/ On a ${}^tAA = J^{-1}$, donc $\mu_k^{-1} = 4\cos^2\frac{k\pi}{2n+1}$, par conséquent :

$$M_n = \sum_{k=1}^n \frac{1}{2\cos\frac{k\pi}{2n+1}}$$

e/ Remarquons que $\sum_{k=1}^{n} \frac{1}{\cos \frac{k\pi}{2n+1}} = \sum_{k=1}^{n} \frac{1}{\sin(\frac{\pi}{2} - \frac{k\pi}{2n+1})} = \sum_{k=0}^{n-1} \frac{1}{\sin(\frac{2k+1}{2(2n+1)}\pi)}$.

On a $\forall x \in]0, \pi/2[$, $0 < x - \frac{x^3}{6} \le \sin x \le x$.

Donc

$$s_n \stackrel{\text{def}}{=} \sum_{k=0}^{n-1} \frac{1}{\frac{2k+1}{(2n+1)}\pi} \leq M_n \leq \sum_{k=0}^{n-1} \frac{1}{\frac{2k+1}{(2n+1)}\pi - \frac{(2k+1)^3}{24(2n+1)^3}\pi^3} \stackrel{\text{def}}{=} S_n$$

Mais

$$s_n = \frac{(2n+1)}{\pi} \sum_{k=0}^{n-1} \frac{1}{2k+1} = \frac{(2n+1)}{\pi} \sum_{k=1}^{n} \frac{1}{2k-1} \underset{n \to +\infty}{\sim} \frac{n \ln n}{\pi}$$

En effet la série $\sum_{k\geq 1}\frac{1}{k}$ diverge et $\frac{1}{2k-1}\sum_{k\to +\infty}^{\infty}\frac{1}{2k}$, de plus $\sum_{k=1}^{n}\frac{1}{k}\sum_{n\to +\infty}^{\infty}\ln n$.

Pour montrer que $M_n \sim \frac{n \ln n}{\pi}$, il suffit de montrer que $S_n - s_n = o(s_n)$.

Lorsque cela est possible, on a $\frac{1}{x-\frac{x^3}{24}}-\frac{1}{x}=\frac{x}{24(1-\frac{x^2}{24})}$, alors :

$$0 \leqslant S_n - s_n = \frac{1}{24} \sum_{k=0}^{n-1} \frac{\frac{2k+1}{2n+1}\pi}{\left(1 - \frac{(2k+1)^2}{24(2n+1)^2}\pi^2\right)} \leqslant \frac{1}{24} \sum_{k=1}^{2n} \frac{\frac{k}{2n+1}\pi}{\left(1 - \frac{k^2}{24(2n+1)^2}\pi^2\right)} \leqslant \frac{2n+1}{24\pi} \frac{\pi}{2n+1} \sum_{k=1}^{2n} \frac{\frac{k}{2n+1}\pi}{\left(1 - \frac{k^2}{24(2n+1)^2}\pi^2\right)}$$

$$\text{Mais } \frac{\pi}{2n+1} \sum_{k=1}^{2n} \frac{\frac{k}{2n+1}\pi}{\left(1 - \frac{k^2}{24(2n+1)^2}\pi^2\right)} \xrightarrow{n \to +\infty} \int_0^{\pi} \frac{x}{1 - \frac{x^2}{24}} dx = -12 \ln\left(1 - \frac{\pi^2}{24}\right)$$

Alors
$$\frac{2n+1}{24\pi} \frac{\pi}{2n+1} \sum_{k=1}^{2n} \frac{\frac{k}{2n+1}\pi}{\left(1 - \frac{k^2}{24(2n+1)^2}\pi^2\right)} \underset{n \to +\infty}{\sim} -\frac{n}{\pi} \ln\left(1 - \frac{\pi^2}{24}\right) \underset{n \to +\infty}{=} o(n \ln n)$$

Par conséquent : $S_n - s_n = o(s_n)$, donc $S_n \sim s_n$.

Conclusion:

$$M_n \underset{n\to+\infty}{\sim} \frac{n \ln n}{\pi}$$

Pour les coquilles...., sadikoulmeki@yahoo.fr