

Baccalauréat 2014 - ES Métropole

Série ES Spécialité Vendredi 20 juin 2014

Pour les candidats de ES ayant suivi l'enseignement de spécialité maths

Exercice 1. QCM 5 points

Commun à tous les candidats

Cet exercice est un questionnaire à choix multiples (QCM).

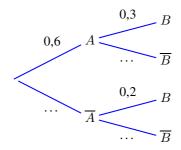
Pour chacune des questions posées, une seule des quatre réponses est exacte.

Indiquer sur la copie le numéro de la question et la lettre correspondant à la réponse choisie.

Aucune justification n'est demandée. Une réponse exacte rapporte 1 point.

Une réponse fausse, une réponse multiple ou l'absence de réponse ne rapporte ni n'enlève aucun point.

1. L'arbre de probabilités ci-dessous représente une situation où A et B sont deux évènements, dont les évènements contraires sont respectivement notés \overline{A} et \overline{B} .



Alors

a.
$$P_A(B) = 0,18$$

b.
$$P(A \cap B) = 0,9$$

c.
$$P_A(\overline{B}) = 0,7$$

d.
$$P(B) = 0, 5$$

2. Avec le même arbre, la probabilité de l'évènement B est égale à :

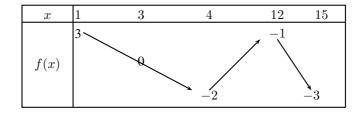
a. 0,5

b. 0.18

c. 0,26

d. 0,38

3. On considère une fonction f définie et continue sur l'intervalle [1; 15]. Son tableau de variation est indiqué ci-dessous.



Soit F une primitive de la fonction f sur l'intervalle [1 ; 15]. On peut être certain que :

3. a. La fonction F est négative sur l'intervalle [3; 4].

3. b. La fonction F est positive sur l'intervalle [4; 12].

3. c. La fonction F est décroissante sur l'intervalle [4; 12].

3. d. La fonction F est décroissante sur l'intervalle [1; 3].

4. Pour tout réel x de l'intervalle]0; $+\infty[$:

l'équation $\ln x + \ln(x+3) = 3 \ln 2$ est équivalente à l'équation :

a.
$$2x + 3 = 6$$

b.
$$2x + 3 = 8$$

c.
$$x^2 + 3x = 6$$

d.
$$x^2 + 3x = 8$$

5. g est la fonction définie sur l'intervalle]0; $+\infty[$ par $g(x)=\frac{5}{x}$.

On note C sa courbe représentative.

L'aire, exprimée en unités d'aire, du domaine délimité par la courbe C, l'axe des abscisses, et les droites d'équations x=2 et x=6, est égale à :

a.
$$5(\ln 6 - \ln 2)$$

b.
$$\frac{1}{6-2} \int_{2}^{6} g(x) dx$$

c.
$$5 \ln 6 + 5 \ln 2$$

d.
$$g(6) - g(2)$$

Exercice 2. Spécialité

5 points

Candidats de ES ayant choisi la spécialité mathématiques

Alice participe à une compétition de tir à l'arc; elle effectue plusieurs lancers de flèches.

Lorsqu'elle atteint la cible à un lancer, la probabilité qu'elle atteigne la cible au lancer suivant est égale à 0, 9.

Lorsqu'elle a manqué la cible à un lancer, Alice se déconcentre et la probabilité qu'elle atteigne la cible au lancer suivant est égale à 0, 4.

On suppose qu'au premier lancer, elle a autant de chances d'atteindre la cible que de la manquer.

Pour tout nombre entier naturel n strictement positif, on note :

 a_n la probabilité qu'Alice atteigne la cible au n-ième lancer;

 b_n la probabilité qu'Alice manque la cible au n-ième lancer;

 $P_n = (a_n \quad b_n)$ la matrice ligne traduisant l'état probabiliste au n-ième lancer.

- **1. 1. a.** Représenter la situation par un graphe probabiliste de sommets A et B (A représentant l'état « Alice atteint la cible » et B l'état « Alice manque sa cible »).
 - **1. b.** Indiquer la matrice de transition M associée à ce graphe. On prendra les sommets A et B dans l'ordre (A, B).
- **1. c.** Justifier que $P_1 = (0, 5 \quad 0, 5)$ et $P_2 = (0, 65 \quad 0, 35)$.
- **2. 2. a.** Montrer que, pour tout nombre entier n strictement positif, $a_{n+1} = 0, 9a_n + O, 4b_n$.
- **2. b.** En déduire que, pour tout nombre entier n strictement positif, $a_{n+1} = 0, 5a_n + 0, 4$.
- 3. 3. a. Compléter l'algorithme fourni en annexe 1 de façon à ce qu'il affiche l'état probabiliste au n-ième lancer.
- **3. b.** Déterminer l'affichage de cet algorithme pour n = 5.
- **4. 4. a.** On considère la suite (u_n) définie pour tout nombre entier naturel n strictement positif par : $u_n = a_n 0, 8$.

Montrer que la suite (u_n) est une suite géométrique dont on précisera la raison et le premier terme.

- **4. b.** Donner l'expression de u_n en fonction de n, puis en déduire que pour tout nombre entier naturel n strictement positif, $a_n = 0, 8 0, 3 \times 0, 5^{n-1}$.
- **4. c.** A long terme, que peut-on penser de la probabilité qu'Alice atteigne la cible ?
- **4. d.** Par quelle autre méthode aurait-on pu trouver le résultat précédent ?

Exercice 3. 5 points

Commun à tous les candidats

Les trois parties de cet exercice peuvent être traitées de façon indépendante.

Partie A

Chaque jour, Antoine s'entraine au billard américain pendant une durée comprise entre 20 minutes et une heure. On modélise la durée de son entrainement, en minutes, par une variable aléatoire X qui suit la loi uniforme sur l'intervalle [20; 60].

- 1. Calculer la probabilité p pour que l'entrainement dure plus de 30 minutes.
- 2. Calculer l'espérance de X. Interpréter ce résultat

Partie B

Dans cette partie les probabilités seront ; si besoin, arrondies au millième.

Les boules de billard américain avec lesquelles Antoine s'entraine sont dites de premier choix si leur diamètre est compris entre 56,75 mm et 57,25 mm; sinon elles sont dites de second choix.

On note D la variable aléatoire qui, à chaque boule prélevée au hasard dans la production de l'entreprise, associe son diamètre, en millimètres.

On suppose que D suit la loi normale d'espérance 57 et d'écart-type 0, 11.

- 1. Déterminer la probabilité p_1 que la boule prélevée ait un diamètre inférieur à 57 mm.
- 2. Déterminer la probabilité p_2 que la boule prélevée soit une boule de premier choix.
- 3. En déduire la probabilité p_3 que la boule prélevée soit une boule de second choix.

Partie C

Le président de la fédération française de billard (FFB) souhaite estimer le niveau de satisfaction de ses 14 000 licenciés quant à l'organisation des tournois.

Antoine estime que les 80 adhérents de son club constituent un échantillon représentatif des licenciés de la FFB. Il est chargé de faire une étude au sein de son club : les 80 adhérents ont répondu, et 66 ont déclaré qu'ils étaient satisfaits.

- $\textbf{1.} \ \ \text{Quelle est, sur cet \'echantillon, la fr\'equence observ\'ee} \ f \ \text{de personnes satisfaites de la FFB} \ ?$
- **2.** Déterminer un intervalle de confiance au niveau de confiance 0,95 de la proportion p de licenciés satisfaits de la FFB. Les bornes de l'intervalle seront arrondies au millième.

3/5

Exercice 4. 5 points

On injecte à un patient un médicament et on mesure régulièrement, pendant 15 heures, la concentration, en grammes par litre, de ce médicament dans le sang.

On obtient la courbe fournie en annexe 2.

A. Étude graphique

Avec la précision permise par le graphique, indiquer :

- 1. la concentration à l'instant initial;
- 2. l'intervalle de temps pendant lequel la concentration est supérieure ou égale à 0, 4 gramme par litre. On fera apparaitre sur le graphique les traits de construction nécessaires.

B. Étude théorique :

On admet que la concentration peut être modélisée par la fonction f définie sur l'intervalle [0; 15] par :

$$f(x) = (x+2)e^{-0.5x}$$

où x représente le nombre d'heures écoulées depuis l'instant initial et f(x) la concentration, en grammes par litre, du médicament dans le sang.

- 1. On note f' la fonction dérivée de la fonction f. Justifier que $f'(x) = -0, 5xe^{-0.5x}$ et en déduire le tableau de variation de la fonction f sur [0; 15].
- **2.** Justifier que l'équation f(x) = 0, 1 admet une unique solution a sur l'intervalle [0; 15].
- 3. Déterminer un encadrement de a d'amplitude un dixième.
- **4.** Un logiciel de calcul formel donne le résultat ci-dessous :

1	dérivez $((x+2)*\exp(-O.5*x))$		
		$\exp(-0.5x) - 0.5*\exp(-0.5x)*(x+2)$	
2	$ \text{d\'erivez}(\exp(-0.5*x) - 0.5*\exp(-0.5*x)*(x+2)) $		
		$- \exp(-0.5*x) + 0.25*\exp(-0.5*x)*(x+2)$	
3	factorisez $(-\exp(-0.5*x) + 0.25*\exp(-0.5*x)*(x+2))$		
		$(0.25*x - 0.5)*\exp(-0.5*x)$	

En vous appuyant sur ces résultats, étudier la convexité de la fonction f sur l'intervalle [0; 15] et préciser l'abscisse d'un éventuel point d'inflexion.

C. Interprétation des résultats :

En vous aidant des résultats obtenus, soit dans la partie B, soit par lecture graphique et sans justifier, répondre aux questions ci-dessous.

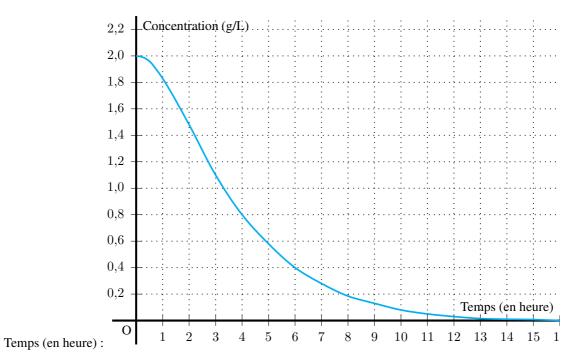
- 1. On estime que le médicament n'est plus actif lorsque la concentration est strictement inférieure à 0,1 gramme par litre. Pendant combien de temps le médicament est-il actif?
- 2. Au bout de combien d'heures la baisse de concentration ralentit-elle?

Annexes à rendre avec la copie

Annexe 1

Entrées		
	Saisir n	
Traitement	[raitement	
	a prend la valeur 0,5	
	b prend la valeur 0,5	
	Pour i allant de 2 à n	
	a prend la valeur $\times a + \dots$	
	b prend la valeur $1-a$	
	Fin Pour	
Sortie		
	Afficher a, b	

Annexe 2



www.math93.com/www.mathexams.fr 5/5